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Abstract The Adelson-Bergen motion energy sensor is well
established as the leading model of low-level visual motion
sensing in human vision. However, the standard model cannot
predict adaptation effects in motion perception. A previous
paper Pavan et al.(Journal of Vision 10:1–17, 2013) presented
an extension to the model which uses a first-order RC gain-
control circuit (leaky integrator) to implement adaptation ef-
fects which can span many seconds, and showed that the
extended model’s output is consistent with psychophysical
data on the classic motion after-effect. Recent psychophysical
research has reported adaptation over much shorter time pe-
riods, spanning just a few hundred milliseconds. The present
paper further extends the sensor model to implement rapid
adaptation, by adding a second-order RC circuit which causes
the sensor to require a finite amount of time to react to a
sudden change in stimulation. The output of the new sensor
accounts accurately for psychophysical data on rapid forms of

facilitation (rapid visual motion priming, rVMP) and suppres-
sion (rapid motion after-effect, rMAE). Changes in natural
scene content occur over multiple time scales, and multi-stage
leaky integrators of the kind proposed here offer a computa-
tional scheme for modelling adaptation over multiple time
scales.

Keywords Short-term neural plasticity . Rapid visual motion
priming . Rapid motion after-effect . Second-order RC
integrator . Motion energy

1 Introduction

The motion energy model (Adelson and Bergen 1985) is a
biologically plausible model of low-level visual motion sens-
ing. In its simplest form, it consists of four spatiotemporal
filters oriented in space-time with pairs tuned to opposing
directions, conventionally presented as two encoding right-
wards motion and two encoding leftwards motion. The con-
volution of these four filters with a space-time representation
of a moving stimulus (input image), produces four responses
that are subsequently squared. Left (EL) and right (ER) motion
energy are computed by summing the two left sensor outputs
and the two right sensor outputs, respectively. The left-right
motion direction of the input image is then computed by
calculating opponent energy, i.e., the difference between the
left and right motion energy (i.e., EL–ER).

Although the motion energy model in its basic form ac-
counts for a range of psychophysical data, such as direction
discrimination (Georgeson and Scott-Samuel 1999) and lateral
masking (Rainville et al. 2002, 2005), it does not account for
the effects of prolonged exposure to unidirectional motion (i.e.,
adaptation). After prolonged adaptation to directional motion,
observation of either a stationary or a non-directional dynamic
(i.e., counterphase flicker) pattern usually evokes an experience
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of motion in the opposite direction; the motion after-affect
(MAE; see Mather et al. 2008 for a review). Recently we have
extended the motion energy sensor by including an additional
stage in the form of a RC automatic gain-control circuit oper-
ating in time domain (i.e., leaky integrator; Pavan et al. 2013).
In particular, after squaring the output of the four space-time
oriented filters, at each time instant the output of each convo-
lution is multiplied by a factor that depends on the output of the
sensor as a function of time in the recent past. This stage
provides saturation of the motion sensors by reducing their
sensitivity as a consequence of being exposed to a directional
motion. We showed that the model predicts the exponential
decay of the MAE as the adaptation-test interval increases
(Hershenson 1993). Exponential decay is a key feature of leaky
integrators (RC gain-control circuits), and has been reported as
an electrophysiological and psychophysical property of the
decay in motion adaptation (van de Grind et al. 2003; Taylor
1963; Vautin and Berkley 1977; Giaschi et al. 1993).

Generally, the MAE is induced by adapting for tens of
seconds. However, there is plentiful physiological evidence
that very brief stimuli presented in the RF of cells, or trains of
electrical stimulation can induce both transient forms of sup-
pression (i.e., adaptation) and facilitation (Priebe, Churchland,
and Lisberger 2002; Lisberger and Movshon 1999; Hempel
et al. 2000; Nelson 1991; Chance et al. 1998; Finlayson and
Cynader 1995; Stratford et al. 1996; Priebe and Lisberger
2002). When two stimuli are presented in rapid succession,
the neural response to the latter stimulus is considerably
reduced, a phenomenon well known as short-term synaptic
depression (Nelson 1991; Finlayson and Cynader 1995;
Varela et al. 1999; Chance et al. 1998; Lisberger andMovshon
1999; Priebe et al. 2002; Priebe and Lisberger 2002; Boudreau
and Ferster 2005). Short-term synaptic depression has been
reported within the striate cortex of cats (Boudreau and Ferster
2005) and also in area MT of monkeys (Lisberger and
Movshon 1999; Priebe et al. 2002; Priebe and Lisberger
2002; Glasser et al. 2011). Priebe et al. (2002), for example,
found that monkeyMT neurons respond to a motion step with
a transient-sustained firing rate. The transition from an initial
high firing rate to a lower sustained rate occurs over a tempo-
ral window of 20–80 ms and can be considered as a form of
short-term adaptation. Accordingly, Glasser et al. (2011)
found that in monkey MT a very brief exposure to directional
motion (67 ms) produced direction-selective responses to
subsequently presented stationary test stimuli. This is also
compatible with a short-term form of motion adaptation.

On the other hand, other studies have reported that brief
stimulation produces not only depression but also short-term
facilitation for subsequently presented stimuli, which leads to
an increase in neuronal responsiveness (Varela et al.1999;
Castro-Alamancos and Connors 1996; Hempel et al. 2000).
Hempel et al. (2000) found strong short-term depression in
neurons of the layer III of the rat prefrontal medial cortex

during high-frequency electrical stimulation. However, they
also found strong short-term facilitation during the early part
of the electrical stimulation. In addition, short-term facilitation
and depression occurred on a timescale ranging from tens to
hundreds milliseconds. Hempel et al.’s (2000) study revealed
that in many cortical circuits short-term forms of depression
and facilitation can coexist and compete (see also Varela et al.
1999 for similar results in the cat’s striate cortex) and such
synaptic dynamics are important in managing the shaping of
neural responses and their interactions.

Recent psychophysical studies on humans indicate that such
short-term forms of neural plasticity could provide the physio-
logical substrate for rapid forms of motion after-effect (rMAE;
suppression) and visual motion priming (rVMP; facilitation)
(Pinkus and Pantle 1997; Kanai and Verstraten 2005; Pavan
et al. 2009, 2010; Pavan and Skujevskis 2013). Very brief
exposure to directional stimuli can bias the perceived motion
direction of a subsequently presented ambiguous test pattern
(Kanai and Verstraten 2005; Pavan et al. 2009; Glasser et al.
2011; Pavan and Skujevskis 2013). In particular, depending on
both the duration of the adaptation pattern and the duration of
the blank inter-stimulus interval (ISI) between adaptation and
testing, the perceived direction of an ambiguous test pattern can
be biased towards the opposite direction (after-effect), or to-
wards the same direction (priming) of the adaptation pattern
(Pinkus and Pantle 1997). Using brief adaptation durations
(e.g., 0.080 or 0.160 s) and ISIs (0.040 or 0.120 s) Kanai and
Verstraten (2005) and Pavan et al. (2009) showed that the
perceived direction of an ambiguous test pattern was biased
towards the direction of the adaptation pattern, resulting in a
rapid form of visual motion priming (rVMP). On the other
hand, increasing the adaptation duration up to 0.320 or 0.640 s,
and using the same ISI levels induced a perceived bias in the
opposite direction to the adaptation pattern (rMAE).

Rapid forms of adaptation thus constitute an important and
distinctive property of neural processing in the visual system.
The aim of the present study was to assess whether a further
extension to the motion energy model can capture this
characteristic. We tested the behaviour of the extended
model against psychophysical data reported in Pavan et al.
(2009) on rapid visual motion priming (rVMP) and rapid
motion after-effect (rMAE), induced by brief exposures to
directional moving patterns.

2 Methods

2.1 Leaky integrators

As in our earlier development of the motion energy model
(Pavan et al. 2013), the new extension implements divisive
feed-forward gain control in motion sensors using a ‘leaky
integrator’ circuit, whose role is to simulate the saturation of
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the motion channel. A general feature of the leaky integrator
is that the output signal at any time point is a fraction of the
input, proportional to the magnitude of the input in the past.

The leaky integrator used in Pavan et al. (2013) consists of
a parallel arrangement of a resistor (R1) and a condenser (C1),
put in series to another resistor (R2) (Fig. 1a). For the sake of
simplicity we call this circuit “first-order integrator”. The
output response (defined as the signal measured across R1)
to a step input is in turn a step that decreases exponentially
with time, the typical temporal scale is: τ=R2C1. More gener-
ally, the response y(t) to a generic input signal z(t) is equal to:

y tð Þ ¼ z tð Þ− e− 1þwð Þt=τ

τ

Z
e 1þwð Þs=τ z sð Þds ð1Þ

where w=R2/R1 is the parameter encoding the information
about the asymptotic saturation level of the motion channel.
The output of the first-order integrator in response to a step
input is depicted in Fig. 2.

A second stage in the leaky integrator was added as fol-
lows: the whole first-order circuit was put in parallel with a
second condenser (C2), and subsequently in series with a third
resistor (R3), whose resistance is chosen to be much smaller
than the others in order to avoid any alteration of the asymp-
totic response. We call this circuit “second-order integrator”
(Fig. 1b). The output of the second-order integrator is given by
the following function:

y tð Þ ¼ e−t=T
w−τ=T

T 1þ wð Þ−τ
Z

es=T z sð Þds

þ e− 1þwð Þs=τ 1

T 1þ wð Þ−τ
Z

e 1þwð Þs=τ z sð Þds ð2Þ

featuring the new time constant T=R3C2.
The second-order circuit is fully described by the parameters

{w, τ, T}, where w regulates the asymptotic magnitude of the
response, τ refers to the timescale needed to reach the asymptote
and T the time needed to reach the maximum response when the
input is switched on. As mentioned earlier, T should be much
smaller than τ in order to keep the two effects (i.e., switching on
and asymptotic decreasing) separate. The response of the
second-order circuit to a step input is shown in Fig. 2. The

comparison between the two responses makes clear the differ-
ence between the first- and second-order integrator. In particular,
the second-order circuit takes a finite amount of time to reach
maximum response, but then it accurately mimics the first-order
integrator in its exponential decay.

Figure 3 shows the theoretical output of the first- and
second-order integrators. Consider, for example, two motion
channels, tuned to left and right respectively, stimulated with a
leftward moving adapting pattern with duration tA, followed
by a blank interval with duration tISI and then a test pattern that
stimulates both channels equally. The difference between the
outputs of the two sensors is Δy(t)=yL(t) - yR(t). A negative
difference (i.e., suppression) indicates rMAE, whereas a pos-
itive difference (i.e., facilitation) indicates rVPM. Figure 3a
shows the two input signals zL and zR, having chosen tA=1 and
tISI=1, and the output difference as functions of time. It can be
clearly seen that the output at the end of the blank interval
indicates rVPM. Figure 3b shows a similar situation, this time
with tISI=2. Increasing the blank interval clearly reduces the
magnitude of the priming that is now almost zero. Figure 3c
and d represent the equivalent situation, this time having set
tA=4. The output at the end of the blank interval in panel C is
similar to the one in panel A, while the one in panel D is
already well inside the region of rMAE. The lesson we draw is
that elongating the adaptation results in a reduced priming
duration. In the next section the second-order integrator is
embedded in the motion energy model.

2.2 Input stimuli

The input stimuli for the model were based closely on those
used by Pavan et al. (2009), and consisted of a spatiotemporal
representation of a leftward drifting sinewave grating
(adapting pattern), ISI and a counterphase flickering grating
(test) (Fig. 4). The input stimuli were encoded in space-time
(i.e., xt) with the spatial dimension covering 8 deg sampled at
intervals of 0.05 deg, and the temporal dimension of 4-s
sampled at intervals of 0.005 s (much shorter that used in
the psychophysical stimulus, in order to obtain a smoother
spatiotemporal representation of the model stimulus; however
frame-to-frame phase-shifts created the same drift velocity for

Fig. 1 Schematic representation of the first-order (a) and second-order (b) integrators. The voltage generators V provide the input signal to the circuits, while
the outputs are read across the resistors R1. The embedding of the first-order integrator in the second-order integrator is clearly noticeable
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both psychophysical and model stimuli) (see section 3.1 for
further details on psychophysical stimuli). Adapting stimuli
spanned 16, 32, 64 or 128 frames, for 0.08, 0.160, 0.320 and
0.640 s adaptation duration respectively, against a grey back-
ground. ISI durations were: 8, 24, 96, 200 and 400 frames,
corresponding to 0.040, 0.120, 0.480, 1 and 2 s.

2.3 Motion energy model

In order to better understand the second-order Motion
Energy Model we briefly introduce both the standard
Motion Energy Model (Adelson and Bergen 1985) and
its modification through the leaky integrator stage. The
spatial and temporal profiles of the filters of the model
covered 2.25 deg of space and 1-s of time. Spatial filter
profiles were even (EV) and odd (OD) Gabor functions
of the form:

EV xð Þ ¼ cos 2πfxð Þe− x=σð Þ2 ð3Þ

OD xð Þ ¼ sin 2πfxð Þe− x=σð Þ2 ð4Þ

where ƒ is 1.1 cpd and σ is 0.5 deg. Temporal filters had the
following form, taken from Adelson and Bergen (1985)
Eq. (6):

f tð Þ ¼ ktð Þne−kt 1=n!−β ktð Þ2= nþ 2ð Þ!
� �

ð5Þ

The value of k scales the response into time units and
was set to 100, while n sets the vertical (temporal) width of
the filter (Challinor and Mather 2010). The parameter n
was equal to 9 for the slow temporal filter and 6 for the

fast temporal filter, as used in previous modelling (Emerson
et al. 1992; Strout et al. 1994; Takeuchi and De Valois
1997; Bergen and Wilson 1985; Rushton 1962). The pa-
rameter β reflects the weighting of the negative phase of
the temporal impulse response relative to the first positive
phase and was set to 0.9 (Strout et al. 1994; Takeuchi and
De Valois 1997; Fuortes and Hodgkin 1964). The product
of the even and odd spatial profiles [i.e., EV(x) and OD(x)]
with the two temporal profiles [ƒslow(t) and ƒfast(t)] creates
four (space-time) separable filters (first layer of the model;
Fig. 2). These filters were combined to obtain in turn four
sensors oriented in space-time; two oriented for leftward
motion and two for rightward motion (second layer of the
model; Fig. 2). The two members of each pair are approx-
imately 90 deg out of phase with each other (Adelson and
Bergen 1985). Convolving these four filters with the same
input image gives four response matrices that are subse-
quently squared (first and second layers of the model;
Fig. 5). We label the matrices resulting from this squaring
as RL1, RL2, RR1, and RR2.

The modified Motion Energy Model was obtained by
implementing an adapting stage by introducing the modified
RC integrator (third layer of the model; Fig. 5). That is, we
first averaged the output z(t) of the convolutions over the
whole spatial range and over the sampling interval Δt=
0.005 s. We can schematically write this averaging as

zh i tð Þ ¼ 1

X

Z
X

z t; xð Þdx ð6Þ

where X is the spatial size of the output matrix. Notice that
the 〈z〉(t) will now act as the input of the integrator stage. Then
at each time slice (row in the output matrix), the output of each
convolution stage is multiplied by the factor

r tð Þ ¼ y tð Þ
zh i tð Þ ¼ 1−

e− 1þwð Þt=τ

zh i tð Þτ
Z
0

t

e 1þwð Þs=τ zh i sð Þds ð7Þ

in the case of the first-order integrator or by the factor

r tð Þ ¼ 1

zh i tð Þ e−t=T
w−τ=T

T 1þ wð Þ−τ
Z

es=T zh i sð Þdsþ e− 1þwð Þs=τ

T 1þ wð Þ−τ
Z

e 1þwð Þs=τ zh i sð Þds
� �

ð8Þ

Fig. 2 Response of the first- (blue) and second-order (purple) integrators
to a step input signal (gold line). Here the asymptotic response y=z/2was
obtained setting w=1, while the time constants were τ=5 and T=0.8

�Fig. 3 Time dependence of left (top sub-panels) and right (mid sub-
panels) input stimuli and of the left-right output difference for a fist-
(blue) and second-order (purple) integrator. Adaptations grow from top
(tA=1, panels A and B) to bottom (tA=4, panels C and D), while the
adapting-target blank intervals (ISIs) grow from left (tISI=1, panels A and
C) to right (tISI=2, panels B and D). The dashed lines indicate the
beginning of the test stimulus. Here it was set w=1, τ=6 and T=1.2
respectively
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with the second-order integrator. For example, rL1(t)will be
obtained taking as 〈z〉(t) the spatial average of RL1(x,t). Notice
that the above formulas directly derive from Eq. (1) and (2).

Formally this can be written as follows:

R0
L1 x; tð Þ ¼ RL1 x; tð ÞrL1 tð Þ

R0
L2 x; tð Þ ¼ RL2 x; tð ÞrL2 tð Þ

R0
R1 x; tð Þ ¼ RR1 x; tð ÞrR1 tð Þ

R0
R2 x; tð Þ ¼ RR2 x; tð ÞrR2 tð Þ

ð9Þ

Then, as required in the standard model, we summed the
responses derived from the two pairs of filters to compute
leftward and rightward motion energies. The output matrices
are respectively defined as:

EL x; tð Þ ¼ R0
L1 x; tð Þ þ R0

L2 x; tð Þ
ER x; tð Þ ¼ R0

R1 x; tð Þ þ R0
R2 x; tð Þ ð10Þ

Opponent energy is then computed using the following
measure of net Energy:

Enet ¼ EL−ER

Eflk
ð11Þ

with a normalization factor, called flicker energy
(Georgeson and Scott-Samuel 1999), defined as an average
over the whole output matrix:

Eflk ¼ 1

size Mð Þ
Z

M
EL þ ERð Þ ð12Þ

where size(M) schematically indicates the size of the output
matrix.

All the quantities described so far can be computed for both
the first- and the second-order integrators. Since the first-order
integrator was described in detail in Pavan et al. (2013), we
now focus on the second-order integrator.

Because of its definition net Energy depends on the choice
of the parameters {w, τ, T}. Thus, it is important to select the
values that best fit the behavioural data reported in Pavan et al.
(2009). Let us start by extracting from the net Energy the
numerical predictions to be tested against the behavioural data
that are presented in the form of a table spanning a set of
adaptation durations and ISI levels. We selected the first
combination of tA and tISI and feed the extended Motion
EnergyModel with the corresponding input pattern, obtaining
a first net Energy matrix. We subsequently averaged the
matrix along the spatial dimension, obtaining a vector that
encodes the mean net Energy as a function of time

ε� tð Þ ¼ 1

X

Z
X
Enet t; xð Þdx ð13Þ

Fig. 4 Representation of a subsample of the input stimuli. The input
stimuli consisted of a space-time (xt) representation of an adapting grating
drifting leftward and with duration of 0.08, 0.160, 0.320 and 0.640 s
(panels from left to right). Adapting stimulus was followed by an inter-
stimulus interval (ISI: 0.120 s in the images) and a directionally ambig-
uous (i.e., counterphase-flicker) test pattern

Fig. 5 The extended motion energy model. The red frame highlights the
integrator stage that is located after the squaring stage (see text for more
details)
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The normalized output was then defined as minus the ratio
between the mean net Energy evaluated at the end of the inter-
stimulus interval (i.e., at the onset of the test stimulus) and the
minimum value of the first-order mean net Energy, defined in
the same way

p tð Þ ¼ −
ε� tA þ tISIð Þ
ε̄1st tAð Þ

ð14Þ

This choice of the normalization factor was made on the
basis of Pavan et al. (2013) as the present generalization is
expected to recover exactly the same scheme if T is neglected.
In Pavan et al. (2013) the denominator of Eq. (14) represented
a lower bound for the mean net Energy, as it described the
amount of rMAE experienced right at the end of the adapta-
tion period by an ideal observer lacking in the second stage of
the leaky integrator. It is therefore natural to extend this role to
the present case, since the addition of the second stage causes
the output values in that regime to rise. Notice that Eq. (14) is
always contained in the interval [−1, 1], indicating rMAE for
negative values and rVMP for positive values. Therefore, its
magnitude can be interpreted as a measure of the strength of
the perceived motion and can be compared to the first entry of
the psychophysical data. The procedure is then iterated for
each combination of tA and tISI and the results are compared
with the data, computing the root mean square error (RSME)
of each combination and summing them together to have a
measure of the quality of the modelling. We call such measure
total Root Mean Square Error (TRMSE).

In the supplementary material we provide the MATLAB
code of the second-order Motion Energy Model.

3 Results

3.1 Psychophysical data

The output of the extended motion energy model was fitted to
a subset of the data reported in Pavan et al. (2009). Eight
observers participated in the Experiment. They sat in a dark
room 57 cm from the screen. Viewing was binocular. They
were instructed to fixate a point at the center of the screen. All
subjects had normal or corrected-to-normal visual acuity.

Stimuli were vertically oriented Gabor patches (full width
of 8 deg at half maximum amplitude and a spatial frequency of
1 c/deg). Adapting stimuli drifted either leftward or rightward;
test patterns were counterphase flickered Gabor patches, as in
the model stimulus. Directional and ambiguous stimuli were
obtained by shifting the phase of the sinusoidal carrier. For
example, a horizontal directional stimulus was created by
shifting the phase left or right (±90 deg). This phase shift
was chosen because Pinkus and Pantle (1997) showed that

visual motion priming is maximum at a 90 deg phase shift.
Ambiguous test patterns were created by shifting the phase
180 deg every 0.080 s. Velocity of the test stimulus was equal
to that of the adapting stimulus (6.25 deg/s). The motion
direction of the adapting stimulus was balanced and random-
ized across trials.

Four adaptation durations were used: 0.080, 0.160, 0.320,
and 0.640 s. After a variable ISI (0.040, 0.120, 0.480, 1, 2 and
5 s) during which the display was blank (except the fixation
point, that was present also during the ISI), an ambiguous test
pattern was presented for 0.320 s.

Observers judged whether the test stimulus was moving in
the same direction or opposite to the adaptation pattern. There
were a total of 48 conditions; 2 adapting directions x 4
adapting durations x 6 adapting-test intervals (ISIs). Twenty
trials were performed for each condition, and the order of
conditions was randomized across trials.

In the present study we consider only ISIs ranging from
0.040 to 2 s, because these ISIs produced reliable rVMP and
rMAE at the adapting durations used (i.e., 0.080, 0.160, 0.320
and 0.640 s; see Kanai and Verstraten 2005 and Pavan et al.
2009).

For the purposes of comparison with model output we
reanalysed a subset of the Pavan et al.’s (2009) psychophys-
ical data to assess whether a particular combination of adap-
tation duration and ISI induced rVMP or rMAE above chance.
To achieve more statistical power the data from the two
adapting directions were pooled.

We performed a series of Bonferroni-Holm corrected two-
sided one-sample t-tests (Holm 1979; Groppe et al. 2011),
separately for each adaptation duration, and across all the ISI
levels. The result showed that using adaptation lasting 0.080 s
with an ISI of 0.040 s the perceived direction of the ambigu-
ous test pattern was significantly biased towards the direction
of the adaptation stimulus (84 % of response in the same
direction) t7=11.26, p=0.0001, resulting in a rVMP. The t-
tests did not report any other significant rVMP effects. For
longer adaptation durations the perceived direction of the
ambiguous test pattern was biased towards the direction op-
posite to the adapting stimulus (rMAE). In particular, adapting
for 0.320 s biased the perceived direction of the test stimulus
opposite to the direction of the adaptation pattern after 0.120 s
(17 % of response in the same direction) t7=−5.99, p=0.005
and 1 s (36 % of response in the same direction) of ISI t7=
−4.66, p=0.008. Adapting for 0.640 s produced a significant
bias towards the opposite direction of the adapting stimulus
only after 0.120 s of ISI (15 %) t7=−7.13, p=0.0001.

3.2 The best fitting procedure

To extract the best fitting values for the second-order integra-
tor parameters {w, τ, T} we started with guessing w=1, τ=
0.5 s and T=0.05 s for which we obtained a TRMSE (1, 0.5 s,
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0.05 s) = 0.282. Subsequently we used aMetropolis-Hastings
algorithm, consisting in assigning a random transition propos-
al (from a uniformly distributed randomization) and evaluat-
ing the TRMSE in the new position. In other words, we
randomly generated a (small) modification of the parameters
and compared the new TRMSE value to the previous one: the
smaller the new value was with respect to the previous one,
the higher was the probability to accept the new position as the
(temporary) best fitting choice. In particular, the acceptance
probability is defined as the ratio between the former and the
latter TRMSE.

Iterating this procedure for several thousand steps (~15 K),
the best fitting choice spans the three-dimensional space of
parameters and rapidly falls (<1,000 steps) into an almost-
degenerate curve of minima, as it can be seen in Fig. 6. It drifts
along this curve for a few thousand steps, then (~4,000 steps)
starts oscillating around some value: w~10, τ~3 s and T~
0.04 s. The transition from the drifting to the oscillating phase
is clearly visible in Fig. 6. All the positions selected from here
are almost equivalent, so we select the one that gives the
smaller TRMSE (11.779, 3.704 s, 0.036 s) = 0.131.

The extended motion energy model incorporating the
second-order integrator accurately fits the behavioural data
on rapid forms of motion after-effect (rMAE) and visual
motion priming (rVMP) (Fig. 7).

4 Discussion

With the addition of a second RC-stage to the leaky integrator,
the motion sensor requires a finite amount of time to fully
react to a sudden change in stimulation. As a result, after very
brief adaptation (e.g., 0.080 s), the motion sensor with the
highest response (i.e., the lowest saturation) at the onset of the
test pattern signals motion in the same direction as the
adapting pattern (i.e., rVMP). On the other hand, following
longer exposure to directional motion the sensor signals a
direction opposite to the adapting pattern (i.e., rMAE). Thus,
the final output of the second-order model shows effects
which mirror those reported by previous psychophysical stud-
ies on fast forms of motion adaptation (Kanai and Verstraten
2005; Pavan et al. 2009, 2010; Glasser et al. 2011; Pavan and
Skujevskis 2013). The extended Motion Energy Model does
not account for another effect previously reported by Kanai
and Verstraten (2005) and Pavan et al. (2009, 2010), called
“Perceptual Sensitization” (PS). PS is a later facilitation that
appears following longer adaptation durations (e.g., 320 and
640 ms) and after ISIs > 2 s, for which the ambiguous test
pattern is biased towards the same direction to that of the
adapter. Hempel et al. (2000) also reported the presence of a
slower form of enhancement of synaptic transmission occur-
ring on the timescale of seconds to tens of seconds in addition

to short-term facilitation and suppression, in the layer Vof the
rat prefrontal medial cortex. The authors found that the decay
time of such enhancement was best fitted by a sum of two
exponentials with a fast decay time of 7 s and a slow decay
time of 71 s. Such enhancements are classically labelled as
“augmentation” and “posttetanic potentiation” for the short
and long phases, respectively (Zengel and Magleby 1982). So
far, physiological data support the notion that augmentation is
seen more clearly in associative areas (Hempel et al. 2000).

In a previous study (Pavan et al. 2010) we pointed out some
similarities between augmentation and PS in terms of decay
time. However, the fact that augmentation has been observed
mainly at high-level areas suggests that PS might be confined
to higher level of motion processing and thus being more
susceptible to attentional and expectation influences
(Seidemann and Newsome 1999; Treue and Maunsell 1996,
1999; Rees et al. 1997; Haug et al. 1998; Buchel et al. 1998;
Huk et al. 2001). Indeed, Daelli et al. (2010) reported a similar
effect using complex objects as stimuli. In particular, when
adapting to complex objects and testing with morphs (ambig-
uous stimuli), they found a switch from adaptation to a prim-
ing effect as the temporal delay between a prototype and an
ambiguous test stimulus was increased (i.e., up to 3 s). The
authors argued that complex interactions between networks,
including expectations for image disambiguation, are likely to
be mediated by synaptic back-projections to early visual cor-
tices (Rolls 1989). Since the neural mechanisms underlying
PS and its interaction with attentional processes and expecta-
tions are still not clear, in the present study we focused on the
early components of neural dynamics (i.e., facilitation and
suppression) (Nelson 1991; Finlayson and Cynader 1995;
Castro-Alamancos and Connors 1996; Varela et al. 1999;
Chance et al. 1998; Lisberger and Movshon 1999; Hempel
et al. 2000; Priebe et al. 2002; Priebe and Lisberger 2002;
Boudreau and Ferster 2005; Glasser et al. 2011). Additionally,
there is psychophysical evidence that PS appears following
brief adaptation to ambiguous complex stimuli (Daelli et al.
2010) and to directionally ambiguous patterns (Kanai and
Verstraten 2005; Pavan et al. 2010), for which a motion energy
detector cannot produce any response.

Hempel et al. (2000) suggested that brief periods of syn-
aptic activity may be able to transiently shift a set of intercon-
nected cortical neurons into a state in which recurrent excita-
tion is sufficiently strong to support persistent activity. One
intriguing possibility is that such neural dynamics could po-
tentially provide the neural mechanism for attractor networks,
considered to play an important role in a variety of visual and
high-level cognitive functions (e.g., visual short-term memo-
ry, working memory, associative memory, spatial orientation;
Amit 1989; Daelli and Treves 2010). For example, Daelli and
Treves (2010) reported that an attractor network model can
account for short-term priming and adaptation effects. In an
attractor network model the strength of the associations
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between attractors can determine a transition between the
activity elicited by the prime and the neural response to the

target. On the other hand, an attractor network model can
account for the switch between priming and aftereffects if it

Fig. 6 Output of theMetropolis-Hastings algorithm. The nearly flat distribution of TRMSE values indicates the presence of the almost-degenerate curve
of minima. The drifting-to-oscillating transition is clearly noticeable in the distributions of w, τ and T

Fig. 7 Extended motion energy
model output fitted to the
psychophysical data. The
proportion of trials in which
observers judged the test stimulus
as drifting in the same direction as
the adaptation stimulus is shown
as a function of the ISI (s). Panels
show the results for adaptation
durations of 0.080, 0.160, 0.320,
and 0.640 s (filled circles).
Positive values on the ordinate
indicate rVMP whereas negative
values indicate rMAE. The
dashed line is the level at which
there was no perceived rMAE or
rVMP. Empty circles indicate the
model’s output. Error bars ± SE
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is endowed with firing rate adaptation that pushes the network
away from its current attractor.

In experimental protocols involving brief adaptation pe-
riods, the first stage of the integrator, with time constant of
some seconds, produces exponential decay that is characteris-
tic of the rMAE. The second stage, with a time constant of tens
of milliseconds, produces the non-instantaneous response on-
set that is responsible for rVPM. Using protocols to measure
the classical MAE (longer adaptation periods), the first stage
alone is sufficient to produce an adequate match to psycho-
physical data but the underlying motion processes may well
possess a second stage integrator as well. Given the psycho-
physical evidence for multiple adaptation sites in the MAE,
the different sites may possess integrators with different time
constants, which mediate psychophysical effects at different
adaptation durations. However, a weakness of the model is
that it is descriptive in the sense that it cannot make predic-
tions regarding the presence of specific impedances in partic-
ular cortical areas of the human brain. The results of our
analysis could be viewed as description of part of a vast
population of parasite impedances, most likely hidden in the
transmission lines that carry the electric signals through the
cortical areas involved in motion processing (e.g., V1/V2,
V3+ and MT). Thus, no exact prediction is made about the
location and distribution of such impedances. The modified
Motion Energy Models (both first- and second-order) can be
further developed, for example, by introducing spatiotemporal
filters selective to a range of contrast levels, spatial and tem-
poral frequencies and speeds in order to account for spatio-
temporal dynamics of the perceptual outcomes related to rapid
and prolonged motion adaptation. This would produce a set of
models useful to make specific predictions on future experi-
ments onmotion processing and would allow inferences about
the cortical sites in which parasite impedances are likely to be
implemented. This is because the selectivity to spatial con-
trast, temporal frequency and speed is implemented in specific
cortical areas involved in motion processing (e.g., V1, V2,
V3, V3A, V3B, V4v and MT/MST; Lingnau et al. 2009). It
may also be advantageous to incorporate top-down influences,
such as an attentional mechanism, into the design. This would
account for a number of attention-related effects as adaptation
to ambiguous motion and perceptual sensitization. There are
indeed plenty of examples in literature that show how atten-
tion can clearly bias the percept of directionally ambiguous
moving stimuli like the attention-based motion (Treue and
Maunsell 1996, 1999; Cavanagh 1992; Verstraten and Ashida
2005), or induce the MAE (Culham et al. 2000).

There have been a number of reports of apparent asynchro-
ny between changes of different visual attributes, such as
between motion and colour (Moutoussis and Zeki 1997;
Arnold and Clifford 2002): When a stimulus oscillates in both
colour and motion, changes in colour appear to be asynchro-
nous with changes in motion, by 50–100 msec. The apparent

asynchrony may be due to differences in the relevant time
constants of the leaky integrators serving different neural sub-
systems. The time constants determine the time required for
each sub-system to react to a change in stimulation, so if they
are different the responses of the sub-systems will change at
slightly different times. One potential area for future investi-
gation would be to apply RC-gain control circuits to models
which encode other stimulus attributes, such as position, and
test the hypothesis that perceptual asynchrony is due to dif-
ferences in the time constants of the leaky integrators. A
second area of investigation would be to extend the model
into two spatial dimensions and test whether it can predict
adaptation-induced changes in apparent direction.

According toWark et al. (2009) the dynamics of adaptation
should reflect a balance between adapting rapidly to avoid
short-term saturation, and adapting slowly to avoid instability
in the absence of changes in image statistics. Changes in
natural image content occur over multiple time scales, so
adaptation in the visual system might be expected to occur
over a correspondingly diverse range of time scales. Multi-
stage integrators of the kind used here successfully to model
rapid and slow forms of motion adaptation offer a computa-
tional scheme for modelling adaptation over multiple time
scales.
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