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In conventional presentations of random-dot kinematograms, two frames of random dots are 
presented in temporal sequence, separated by a blank inter-stimulus interval, and a coherent offset 
in spatial position is added to dots in one frame relative to dots in the other frame. Direction 
discrimination performance is limited temporally to inter-stimulus intervals below about 100 msec 
(T&J. Experiments are described in which temporal smoothing was applied to the onset and offset 
of each frame in the kinematogram. T,,, was found to increase in proportion with the time constant 
of the temporal smoothing function. An explanation based on contrast-dependent responses in simple 
motion detectors cannot accommodate the results. Instead, the increase in T,,,,, with temporal 
smoothing, and analogous increase in spatial limit (D,,,) with spatial blurring, can be related to the 
spatiotemporal frequency content of the stimulus. Random-dot kinematograms can be viewed as 
continuously drifting patterns that have been discretely sampled at regular spatiotemporal intervals. 
Sampling introduces artefacts (alias signals), which become more intrusive as sampling rate declines 
(i.e. inter-stimulus interval or spatial displacement increases) and consequently limit discrimination 
performance. Temporal smoothing or spatial blurring extends performance because it removes alias 
signals generated by high spatiotemporal frequencies in the pattern. Computational modelling to 
estimate the Fourier energy available in random-dot kinematograms confirmed that the sampling 
account can predict the proportional increase in T,,,,, and D,,, limits as filter time or space constant 
increases. 

Motion Random-dot kinematograms Sampling Temporal frequency 

INTRODUCTION 

Random-dot kinematograms (RDKs) have played a 
central role in the development of theories relating to 
early motion analysis in the visual system. In a simple 
RDK, two frames containing random black-white dots 
are presented in temporal sequence at the same spatial 
location. The only difference between the two frames is 
that a coherent shift in position is added to some or all 
of the dots in the second frame relative to the first, either 
in one direction or its opposite. The observer’s task is to 
identify the direction of shift (if all dots shift position), 
or identify the shape of the displaced region (if only some 
dots shift position). Early findings were interpreted as 
evidence for a “short-range” motion process. Braddick 
(1973, 1974) found that shape discrimination was 
reliable for short spatial displacements (below about 
0.25 arc deg), but once an upper limiting displacement 
was exceeded (the so-called D,,, limit) discrimination 
was no longer possible. Similarly, good discrimination 
performance was limited temporally to inter-stimulus 
intervals below about 100 msec (T,,,). These performance 
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limits have been replicated in numerous experiments, 
and are usually attributed to physiological properties 
of simple motion detectors. Each detector consists of 
two input receptive fields positioned at adjacent retinal 
locations, whose responses are multiplied together at a 
comparator neuron. If a temporal delay (dt) is imposed 
on the signal arriving from one of the two inputs, then 
the comparator’s response is maximal only when the 
input fields are activated sequentially in the appropriate 
order (not in the reverse order). D,,, in RDKs was taken 
as an estimate of the spatial offset between the detector’s 
input receptive fields, and T,,, was taken as an estimate 
of dt (e.g. Baker & Braddick, 1985). 

Low-pass spatial filtering of RDKs has been found to 
extend the D,,, limit, with D,,, increasing in proportion 
with the space constant of the filter [at least above a 
certain minimum filter space constant (e.g. Morgan, 
1992)]. According to the physiological account of 
detection limits, the increase in D,,, with spatial blurring 
can be related to the variation in receptive field size of 
motion sensors, under the assumption that sensors tuned 
to lower frequencies can detect greater spatial displace- 
ments (Cleary & Braddick, 1990; Burr, Ross & Morrone, 
1986). Of course broadband patterns contain low as well 
as high spatial frequencies, but Cleary and Braddick 
(1990) argue that performance with these patterns is 
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limited by incoherent responses generated in high- 
frequency detectors by large displacements. Alternatively, 
the D,,, spatial limit can be viewed as representing 
an informational limit rather than a physiological limit 
on discrimination. The arguments put forward by 
Bischof and DiLollo (1990) Eagle and Rogers (1991), 
and Morgan and Mather (1994) can be summarized as 
follows. The probability of a correct response at a certain 
displacement depends on how great that displacement is 
relative to the density of features in the “neural image” 
of the dot pattern (i.e. after spatial filtering by early 
receptive fields). Beyond a certain limiting displacement 
(which sets O,,,), the ambiguity caused by the intrusion 
of false matches between features in the two stimulus 
frames is too great to allow reliable discrimination of 
direction. Thus low-pass spatial filtering extends D,,, 
because it decreases the density of features in the image 
and ameliorates the false matching problem. The inform- 
ational theory can be re-cast in the Fourier domain by 
first considering RDKs as spatiotemporal samples of 
drifting patterns. Sampling introduces artefacts (alias 
signals) which become more intrusive as sampling rate 
declines (i.e. spatial displacement increases). Beyond 
a limiting displacement, corresponding to D,,,, alias 
signals prevent reliable direction discrimination, In this 
version of the theory, low-pass filtering extends D,,, 
because it removes the high frequencies that require high 
sampling rates to avoid aliasing. The space domain and 
frequency domain versions of the informational theory 
are clearly homologous, but we shall argue below that 
the frequency domain version is more general because it 
can be applied to the effects of temporal filtering as well 
as to the effects of spatial filtering. 

In this paper we examine whether temporal filtering 
extends the temporal limit T,,,,, in the same way that 
spatial filtering extends D,,,. The physiological account 
of spatial limits can be extended to predict that low-pass 
temporal filtering will extend T,,, limits because it will 
isolate responses in low temporal frequency tuned sensors 
that can cope with longer inter-stimulus intervals. 
However, temporal filtering should be less effective than 
spatial filtering, because there are relatively few channels 
(two or three) tuned to different temporal frequencies 
but at least twice as many channels tuned to different 
spatial frequencies (Anderson & Burr, 1985; Burr et al., 
1986; Hess & Snowden, 1992). On the other hand, the 
informational account predicts the temporal filtering 
will produce equivalent effects to spatial filtering-both 
remove high spatiotemporal frequencies responsible for 
aliasing, so both should extend detection limits. 

EXPERIMENT 1 

In conventional presentations of RDKs, the onset 
and offset of each frame is abrupt, involving stepwise 
increases and decreases in dot contrast (upper traces in 
Fig. 1). We applied temporal smoothing to the onset 
and offset of each frame, using a cumulative Gaussian 
smoothing function, so that dots appeared and dis- 
appeared gradually (lower traces in Fig. 1). To assess the 
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FIGURE I. Timeecourse of stimulation in RDK displays. The top two 
traces depict the abrupt onset and offset of each frame in conventional 
displays. The bottom two traces depict the original abrupt onsets and 
offsets, and corresponding temporally smoothed changes used in the 

present experiments. 

effect of temporal smoothing, we measured T,,,,, for 
discriminating the direction of a fixed small displacement, 
as a function of the time constant of the smoothing 
function. A fixed frame duration was used, long enough 
for maximum dot intensity to be reached even for the 
longest filter time constants. 

Method 

Subjects. Six observers participated, the two authors 
and four others who were unaware of the purpose of the 
experiment. 

Apparatus and stimuli. Visual displays were generated 
by a PC-compatible computer equipped with a high- 
resolution raster graphics sub-system, and displayed on 
a Hitachi 14MVX monitor (P22 phosphor) at a frame 
rate of 83 Hz (non-interlaced). In between trials, the 
screen was uniformly illuminated at 30 cd. rn. m2, except 
for a small red fixation cross at its centre. 625 pairs of 
dots (each subtending 2 arc min) were plotted at random 
positions in a central 4 x 4 arc deg screen area (viewing 
distance 114 cm), in two different look-up table (LUT) 
numbers and offset spatially by a fixed horizontal 
distance. The random locations of dot pairs were con- 
strained to avoid overlaps between pairs, so on average 
13% of the allowable dot positions were filled in each 
frame. By means of LUT manipulation, the intensity of 
each dot could be varied independently between back- 
ground level (30 cd .rn. ‘) and maximum intensity 
(70 cd.rn. -‘). Wh en one dot was made to appear and 
disappear before the other, an impression of apparent 
motion was seen. To create temporal smoothing at the 
onset and offset of each “frame”, dot intensity increased 
gradually from grey to white over a series of TV frames, 
and then decreased gradually back to background level. 
The (y-corrected) changes in grey level conformed to a 
cumulative Gaussian profile. The following Gaussian 
time constants were used in different presentations: 
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0 (i.e. conventional onset/offset), 12, 24, 48 and 96 msec. 
At a time constant of 0 msec, each dot changed from 
background intensity to maximum intensity in successive 
TV frames. At a time constant of 12 msec, each dot 
faded up from background to maximum intensity in four 
TV frames, while the longest time constant of 96 msec 
involved fading over 32 TV frames (in all cases the tran- 
sition from background intensity to maximum intensity 
occurred over a time period spanning four time con- 
stants of the Gaussian function). Frame duration can be 
defined as the interval between the onset of each frame 
(time at which the dots begin to increase in grey level), 
and its offset (time at which the dots begin to decrease 
in grey level), as depicted in Fig. 1. Equivalently, it can 
be defined as the time interval separating the mid-points 
of the onset and offset smoothing functions. Inter- 
stimulus interval (ISI) can be defined as the time period 
separating the offset of the first frame and the onset of 
the second frame (see Fig. 1). Frame duration was fixed 
at 384msec (32 TV frames), just sufficient for dots to 
reach maximum intensity at the longest time constant 
used. IS1 was varied in different presentations, to permit 
estimation of T,,,,,. 
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FIGURE 2. Results of Expt 1, showing mean percentage correct in a 
direction discrimination task as a function of ISI. (a) Results obtained 
using a displacement of 2arc min; (b) results obtained using a 
displacement of 16 arc min. Different curves in each figure represent 
results when the onset and offset of each frame was temporally 
smoothed using Gaussian filters with different time constants (specified 
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FIGURE 3. T,,, values calculated from the psychophysical data 
obtained in Expts 1, 2 and 3. T,,,,, is defined as the IS1 yielding 75% 
correct in the direction discrimination task, calculated by linear 
interpolation. Circles-results from Expt 1 at two displacements; x - 
results from Expt 2 involving a shorter frame duration; +-results 

in the inset). from Expt 3 involving 50% black-white patterns. 

Design andprocedure. The design involved 50 factorial 
combinations of five ISIS (24, 48, 96, 192 and 384 msec), 
five filter time constants (0, 12, 24, 48 and 96 msec), 
and two displacements (2 and 16 arc min). Data were 
accumulated for each subject over 10 experimental 
sessions, each involving randomly ordered presentations 
of stimuli from all conditions, until 40 trials had been 
presented for each stimulus. Each trial involved a single 
two-frame presentation of the stimulus, direction selected 
at random, following which the observer pressed one of 
two buttons to indicate perceived direction. The spatial 
arrangement of dots varied randomly from trial to trial. 

Results and discussion 
All subjects showed near-perfect direction discrimin- 

ation at small ISIS, with performance declining as IS1 
increased. Figure 2 plots mean discrimination perform- 
ance as a function of ISI, with smoothing function time 
constant as the parameter. Figure 2(a) depicts results 
with the small displacement, and Fig. 2(b) depicts results 
with the large displacement (SEs have been omitted for 
clarity, but were reliably below 5%). In a three-factor 
ANOVA, the effects of IS1 and filter time constant 
were highly significant (ISI, F4,2,, = 105.51, P = 0.0001; 
time constant, F4,20 = 10.55, P = 0.001 l), as was their 
interaction (F,6,80 = 3.86, P = 0.0001). Thus, temporal 
smoothing enhanced performance at longer ISIS. To 
quantify this effect, T,,,,, was calculated for each filter 
time constant, defined as the 75% point of the psycho- 
metric function relating direction discrimination to ISI. 
Figure 3 shows T,,, as a function of filter time constant. 
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Open circles depict results at the short displacement, and 
solid circles depict results at the long displacement. The 
arrows on the ordinate adjacent to each data set give 
performance using unfiltered patterns (i.e. time constant 
= 0 msec). It is clear that, beyond a time constant of 
24 msec, T,,,,, increases in proportion with the time 
constant of the smoothing filter. 

The effect of temporal filtering is strikingly similar 
to the effect of spatial filtering, in extending perform- 
ance limits in proportion to the degree of filtering. 
Before discussing possible explanations for this effect, 
supplementary experiments will be described which 
attempted to replicate the result under different stimulus 
conditions. 

EXPERIMENT 2 

The data of Expt 1 were collected using a single, rather 
long, frame duration (384 msec). To assess whether the 
effects generalize to shorter frame durations, Expt 1 was 
repeated using a frame duration of 192 msec. Recall 
that the longer frame duration was chosen to allow 
temporally filtered patterns to reach maximum contrast 
at the longest filter time constant. We applied the same 
restriction in the second experiment, so the longest 
temporal filter time constant used was 48 msec. 

Method 

Subjects. Four subjects took part. All had performed 
in Expt 1. 

Apparatus, stimuli and procedure. All details were 
identical to those given above for Expt 1, with the 
following exceptions. Only one displacement was used 
(2 arc min); frame duration was fixed at 192 msec; 
and only four temporal filter time constants were used 
(0, 12, 24 and 48 msec). 

Results and discussion 

T,,,,, values were calculated from the mean data 
relating percent correct discrimination to ISI, and are 
plotted in Fig. 3 ( x ). As in Expt 1, temporal smoothing 
enhanced performance at longer ISIS. In a two-factor 
ANOVA, the effects of IS1 and filter time constant 
were significant (ISI, F4,,* = 22.32, P = 0.0001; time 
constant, F3,9 = 5.72, P < 0.018) as was their interaction 

(Fn.36 = 2.05, P < 0.049). The results of Expt 2 replicate 
those of Expt 1, though it seems that a shorter frame 
duration improves the overall level of performance. 
Experiment 3 tested whether the results of the first two 
experiments can be replicated using high-density dot 
patterns. 

EXPERIMENT 3 

In Expts 1 and 2, only 625 visible dots were visible in 
a 120 x 120 dot area of the display. Dot density is known 
to have a major effect on performance (e.g. Morgan 
& Fahle, 1992), so it is important to establish whether 

results generalize to dense dot patterns. Experiment 3 
employed 50% blackkwhite random dot patterns. 

Method 

Subjects. Five observers took part, three of whom had 
served in Expt 1. 

Apparatus and stimuli. Equipment was identical to 
that used in previous experiments. However, a different 
animation technique was employed, which allowed pre- 
sentation of dense random-dot patterns. The two frames 
of the random-dot pattern were presented using an 
interleaving technique, so that frame 1 was displayed in 
even-numbered TV frames, and frame 2 was displayed 
in odd-numbered TV frames. The TV refresh rate was 
83 Hz. Each RDK frame contained 50% blackkwhite 
random dots and, as usual, dots in frame 2 were given 
a coherent spatial displacement relative to dots in frame 
1 (fixed at 4 arc min, either leftward or rightward). If 
dots in frame 2 were set to zero contrast, while dots in 
frame 1 were set to maximum contrast, then only frame 
1 was visible in the interlaced display. If, during the 
flyback period following a view of dot frame 1, dots in 
frame 2 were switched to maximum contrast and dots in 
frame 1 were switched to zero contrast, apparent motion 
was seen between frames 1 and 2 in the usual manner. 
To create temporal smoothing at the onset and offset 
of each frame, contrast was increased and decreased 
gradually over a series of TV frames. Unlike the 
technique used in Expts 1 and 2, this technique places 
no constraints on the spatial properties of the dot 
pattern. However, the interlacing procedure halves 
the effective refresh rate of each frame of dots from 
83 to 46.5 Hz, resulting in coarser control of temporal 
modulation. 

Temporal modulation of dot contrast conformed to 
a cumulative Gaussian profile. The following Gaussian 
time constants were used: 0, 12, 24 and 48 msec. The dot 
pattern consisted of an array of 64 x 64 dots, with each 
dot subtending 4 arc min on a side. The mean luminance 
of all patterns was 60 cd.rn. m2. Dot contrast in each 
RDK frame was 0.48 (allowing for the attenuation 
caused by interlacing). The duration of each RDK frame 
was fixed at 384 msec. As before, IS1 was varied in 
different presentations, to allow estimation of T,,,. 

Design andprocedure. Stimuli were presented 20 times 
in random order to each subject in a single session. As 
in previous experiments, each trial consisted of a single 
two-frame exposure of the stimulus, direction selected at 
random, following which the observer pressed one of 
two buttons to indicate perceived direction. 

Result and discussion 

As in previous experiments, T,,, values were 
calculated from the data, and are plotted in Fig. 3 (+). 
T,,,,, increased in proportion with smoothing filter time 
constant for the two longer time constants, replicating 
earlier results. Having established that temporal smooth- 
ing extends T,,,,, in both low density and high density 
patterns, we now consider possible explanations for the 
effect. 
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EXPERIMENT 4 

Do results reflect the functional properties of motion 
detectors, or the varying information content of filtered 
kinematograms? The proportional increase in T,,, with 
filter time constant, equivalent to previously reported 
effects of spatial filtering on D,,,, is inconsistent with the 
physiological explanation based on selective activation 
of low-frequency channels. There should be less scope 
for improved detection in the case of temporal filtering 
compared to spatial filtering, because there are fewer 
temporally tuned channels. A possible alternative func- 
tional explanation runs as follows. Earlier, we defined 
IS1 as the time interval between the offset of frame 1 (or 
the time at which the intensity of its dots falls through 
the midpoint of the temporal smoothing function) and 
the onset of frame 2 (or the time at which the intensity 
of its dots rises through the midpoint of the smoothing 
function). Defined in these terms, the maximum IS1 sup- 
porting direction discrimination increases in proportion 
with the time constant of the smoothing function, as 
shown in Fig. 3. However, it may be that as far as the 
visual system is concerned the efictive temporal interval 
is the time period between the dots in frame 1 falling 
below some minimum contrast level, and the dots in 
frame 2 rising above this threshold. If the effective 
interval supporting motion detection (dt) was fixed, as 
described in the Introduction for simple motion detectors, 
then our results can be explained, at least qualitatively. 
At any one ISI, temporal smoothing brings the threshold 
increments and decrements from successive frames closer 
together in time, reducing the eflective interval between 
frames. A fixed efective interval (corresponding to dt) 
would occur at progressively longer ISIS as filter time 
constant increases. Clearly, this ‘threshold’ account 
predicts that an increase in dot contrast should produce 
similar effects to an increase in filter time constant. If 
pattern contrast is increased while all other parameters 
remain fixed, the efictive interval between frames will 
decrease, because dots in the first frame will fall below 
threshold later after they being fading off, and dots in 
the second frame will rise above threshold sooner after 
they begin fading on. To test the prediction of contrast 
dependency, we measured T,,,,, in dense, temporally 
filtered patterns as a function of contrast. 

Method 

Subjects. Four subjects took part, three of whom had 
served in previous experiments. 

Apparatus and stimuli. The same equipment and 
stimulus generation techniques were used as in the 
previous experiment. Pattern contrast in each trial was 
selected from the following four values: 0.05, 0.1, 0.2 
and 0.4 (values adjusted for the effect of interleaving). 
Temporal filter time constant was fixed at 48 msec, 
and frame duration was fixed at 384 msec. IS1 was 
manipulated to allow estimation of T,,,,,. 

Design and procedure. Stimuli at different ISIS were 
presented 40 times each in random order to each subject, 
spread over four sessions. As in previous experiments, 
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FIGURE 4. Results of Expt 4. (a) Mean percentage correct as a 
function of ISI, with different curves depicting results at different 
contrasts. (b) r,,, as a function of contrast (a), calculated from the 
psychophysical data as described in Fig. 3. 0 show the contrast effect 

predicted by the threshold explanation (see text for details). 

each trial consisted of a single two-frame exposure of the 
stimulus, direction selected at random, following which 
the observer pressed one of two buttons to indicate 
perceived direction. 

Results and discussion 

Figure 4(a) plots mean percentage correct as a function 
of IS1 and contrast, and Fig. 4(b) plots T_ as a function 
of contrast (solid symbols), calculated from the data 
in Fig. 4(a). There is only a relatively small effect of 
contrast. To assess the plausibility of the threshold 
explanation, we derived quantitative preductions for the 
effect of contrast as follows. Assume that the threshold 
level of contrast necessary to attain 75% correct in 
the task is fixed at 2.5%, that the dot patterns have 
a maximum contrast of loo%, and that the effective 
temporal interval supporting motion detection (dt) is 
fixed at 60 msec. If a temporal smoothing filter with a 
time constant of 48 msec is applied to each frame (as in 
the experiment), then T,,,,, will be reached at an IS1 of 
248 msec, calculated as (60 + 94 + 94) msec. The 60 msec 
corresponds to the fixed interval dt; 94 msec is the time 
interval required after the offset of frame 1 for its dots 
to reach 2.5% contrast (1.96 SDS after passing the mid- 
point of the smoothing function). A further 94 msec is 
added because frame 2 will reach 2.5% contrast 1.96 SDS 
before its dots reach the mid-point of the smoothing 
function (recall that IS1 is defined as the interval separ- 
ating the mid-points). If contrast is reduced to 50%, 
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FIGURE 5. Comparison of psychophysical T,,,,, values obtained in 
Expts 1 and 3 (solid symbols) with values predicted by the threshold 
model (0) and the sampling model (0). Psychophysical data is 
replotted from Fig. 3, and derivation of predictions is described in the 
text. Note that DP predictions have been scaled to msec by equating 
one time-frame in Fig. 9 to 100 msec (i.e. re-scaling the abscissa in Fig. 9 
so that the predicted curves superimpose on the data curves in Fig. 2). 

T,,, falls to 218 msec (60 + 79 + 79) because the 2.5% 
threshold is reached 1.65 SDS from the mid-point of 
the function. A further reduction in contrast to 25% 
shortens T,,,,, to 182msec (60+ 61 + 61), because the 
2.5% threshold is reached 1.28 SDS away from the 
mid-point of the function. The predicted decline in T,,,,, 
with contrast is plotted in Fig. 4(b) as open symbols. 
The relatively small effect of constrast evident in the data 
is well predicted by the threshold model. However, 
predicted T,,,.,, values are clearly much lower than those 
obtained. Predicted values can be brought into align- 
ment with the psychophysical data by increasing the value 
of dt from 60 to 160 msec, which shifts the predicted 
curve up the ordinate in Fig. 4 (changes to the threshold 
value of 2.5% only serve to shift the curve sideways on 
the abscissa, re-scaling the contrast values associated 
with particular levels of performance). Such a large dt 
value seems implausible, since it implies rather large T,,, 
values even in unfiltered patterns. We derived further 
predictions from the threshold model for the variation in 
T,,,.,, with filter time constant, using the same procedure 
as above. Threshold was fixed at 2.5%, and dt was set 
at 160 msec, for consistency with the results of Expt 4. 
Predictions are plotted against data from Expts 1 and 3 
in Fig. 5 (recall that the stimulus used in Expt 3 was 
identical to that used in Expt 4). The threshold model 
(0) predicts a more gradual decline in T,,,,, than is 

*We are grateful to an anonymous referee for suggesting this stimulus. 

evident in the psychophysical data (solid symbols). Pre- 
dicted T,,,,, approaches an asymptotic value of 160 msec 
(the fixed value of dr) as filter time constant approaches 
zero. The predicted function can be steepened by decreas- 
ing dt, but only approaches the proportionality shown 
in the data when dt approaches zero. So the threshold 
explanation requires large dt values to accommodate the 
contrast data, but small dt values to accommodate 
the filtering data. It cannot offer a good fit for both sets 
of data with a single dt value. 

However, the picture is complicated by the fact that 
motion response is likely to be a nonlinear function of 
contrast. So, as a further test of the threshold explan- 
ation that does not require assumptions about contrast 
response, we conducted a final experiment to compare 
direction discrimination performance for three stimuli: 

Step-a two-frame RDK without temporal filtering 
(rectangular onset and offset); 
Gaussian-a two-frame RDK with a Gaussian 
smoothing filter applied to the onset and offset of 
each frame (time constant 96 msec); 
Tailed-identical to Gaussian, except that only the 
offset tail of the first frame and the onset tail of the 
second frame were visible.* 

It is straightforward to predict that performance with 
the Gaussian stimulus will be better than performance 
with the Step stimulus, as found in previous experiments. 
The threshold explanation of temporal filtering effects 
predicts that performance with the Tailed stimulus 
will be comparable to performance with the Gaussian 
stimulus, because the two stimuli have the same “tails” 
which mediate extended detection levels at large ISIS. 
The informational account, which explains filtering 
effects in terms of removing sampling artefacts generated 
by high frequencies, predicts that performance with the 
Tailed stimulus will be worse than performance with the 
Gaussian stimulus because the Tailed stimulus contains 
high frequencies introduced by the sudden onset and 
offset of each tail. 

EXPERIMENT 5 

Method 
Subjects. Four subjects took part, both authors and 

two naive observers who had participated in previous 
experiments. 

Apparatus, stimuli and procedure. All equipment and 
stimulus details are identical to those given for Expt 1. 
Only one displacement was used (2 arc min), and frame 
duration was fixed at 384 msec. The Step and Gaussian 
stimuli were identical to corresponding stimuli in Expt 1 
(i.e. time constants of 0 and 96 msec respectively). The 
Tailed stimulus was identical to the Gaussian stimulus 
except that only the descending portion of frame one and 
the ascending portion of frame two were visible. Five 
different IS1 values were used in different trials (24, 48, 
96, 192 and 384 msec). A total of 600 trials (3 stimuli x 
5 ISIS x 40 trials) were presented in random order over 
two experimental sessions. 
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FIGURE 6. Results of Expt 5, show mean percentage correct in a 
direction discrimination task as a function of ISI, for three different 

stimuli (see key). 

Results and discussion 

Figure 6 shows mean direction discrimination per- 
formance as a function of ISI, for each of the three 
stimuli. SEs have been omitted for clarity, and were on 
average 4.3 %. Results for the Step and Gaussian stimuli 
are very similar to those in Fig. 2Aiscrimination 
performance is much better for the temporally filtered 
stimulus than for the unfiltered stimulus. Crucially, 
performance with the Tailed stimulus is much worse 
than performance with either of the other stimuli at most 
ISIS, indicating that discrimination is not mediated by 
responses to the tails of the two frames. 

Taking the results of Expts 4 and 5 together, we 
conclude that the threshold model does not provide 
a satisfactory explanation for the effects of temporal 
smoothing on detection limits. An alternative approach 
will now be proposed, which can embrace both temporal 
filtering effects and spatial filtering effects. 

A SAMPLING MODEL OF FILTERING EFFECTS 
IN RDKS 

As a starting point, it is useful to consider the RDK 
as a directly sampled version of a continuously drifting 
random-dot pattern. The left-hand side of Fig. 7 shows 
xt plots of a row of random black-white elements 
(horizontal axis) at different instants in time (vertical 
axis). Figure 7(a) depicts a continuously drifting pattern 
(within the resolution limits of the pixel-based data), 
and Fig. 7(b) depicts a sampled version in which the row 
of elements undergoes discrete rightward displacements 
at successive time intervals (separated by uniform grey 
ISIS). The right-hand side of Fig. 7 shows the spatio- 
temporal Fourier transform of each xt plot. In the case 
of continuous drift (upper spectrum), Fourier energy is 
confined to a tilted line in frequency space. The angle 
of tilt specifies velocity, and in crude terms energy in 
the top-right and bottom-left quadrants signifies right- 
ward motion, and energy in the top-left and bottom- 
right quadrants signifies leftward motion (see Watson, 
Ahumada & Farrell, 1986). In the sampled pattern 

(lower spectrum), energy corresponding to the signal 
again falls along a line passing through the origin, but 
the spectrum contains repeating replicates of the signal. 
The distance between replicates depends on sampling 
rate, in accordance with the Sampling Theorem. Thus, 
the horizontal separation between replicates (i.e. on the 
spatial frequency axis) depends on the size of the spatial 
displacement separating samples in the xt plot, and the 
vertical separation between replicates (i.e. on the temporal 
frequency axis) depends on the duration of the blank IS1 
in the xt plot. A number of current models of low-level 
motion detection in the visual system assume that detec- 
tors sample small regions in spatiotemporal frequency 
space: detectors tuned to rightward motion have receptive 
fields symmetrically place in the top-right and bottom- 
left quadrants, and detectors tuned to leftward motion 
have receptive fields in the top-left and bottom-right 
quadrants (see Adelson & Bergen, 1985; Watson & 
Ahumada, 1985). In the case of continuous drift, the 
stimulus clearly offers a strong signal for detectors tuned 
to rightward motion, since energy is confined to the 
“rightward” quadrants. In the case of sampled motion, 
detector response will be contaminated by energy from 
replicates spilling over into the “leftward” quadrants. 
The contamination becomes more severe as the spatial 
and/or temporal sampling interval increases, and the 
replicates move closer in frequency space to the signal. 
Watson et al. (1986) and Burr et al. (1986) demonstrated 
that subjects’ ability to discriminate between continuous 
motion and sampled motion can be explained by the 
intrusion of alias signals falling inside the visual system’s 
spatiotemporal “window of visibility”. In the case of 
direction discrimination in unfiltered RDKs, alias signals 
falling inside the window of visibility should impair 
performance at longer ISIS and/or larger spatial displace- 
ments, in agreement with the standard psychophysical 
results obtained from these stimuli. 

Turning to filtering effects, why does temporal 
smoothing improve peformance at longer ISIS? Tem- 
poral smoothing is a form of low-pass filtering, which 
effectively removes high spatiotemporal frequencies. 
Since alias signals are generated by high frequencies 
(which require higher sampling rates), low-pass filtering 
reduces the aliasing problem, allowing high levels of 
performance to extend to lower sampling rates (i.e. 
longer ISIS). Low-pass filtering is a standard technique 
in signal processing to remove sampling artefacts from 
sampled signals. Figure 8 shows examples of xt plots 
and their Fourier spectra before and after temporal 
smoothing. The top xt plot shows a two-frame RDK of 
the kind used in our experiments. Its spatiotemporal 
Fourier spectrum is severely contaminated by alias 
signals. The bottom xt plot is identical to the top plot, 
except that it has been smoothed or blurred along the 
vertical axis, to simulate the effects of temporal smooth- 
ing in our experiments. The frequency spectrum of the 
smoothed pattern contains no energy in the high spatio- 
temporal frequencies which tend to carry alias signals in 
the unfiltered pattern, and should therefore offer a more 
coherent signal for detectors tuned to rightward motion. 
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FIGURE 7. .~t plots of random element patterns, and their spatiotemporal Fourier transforms. (a) Continuous motion; 
(b) sampled motion, as used in RDKs. Each xt plot was held as a 128 x 128 element array, so each transform represents 64 
spatial frequencies horizontally, and 64 temporal frequencies vertically. Each pixel in the transform represents the Fourier 
amplitude at that frequency, ]F(u,v)(, scaled conventionally as follows: log[l + ]F(u,v)]]. Scaled amplitudes were quantised to 

256 grey levels for display, with darker pixels representing higher amplitudes. 
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FIGURE 8. xt plots and Fourier transforms of a two-frame random-element kinematogram before (a) and after (b) application 
of a temporal smoothing filter (i.e. along the vertical axis). Conventions as in Fig. 6. 
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FIGURE 9. XI plots and Fourier transforms of a two-frame random-element kinematogram before (a) and after (b) application 
of a spatial smoothing filter (i.e. along the horizontal axis). Conventions as in Fig. 6. 
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The same “sampling” explanation can obviously be 
applied to the improvement in displacement limits result- 
ing from low-pass spatial filtering of RDKs. Figure 9 
shows xt plots and Fourier transforms for a two-frame 
RDK before and after blurring along the horizontal 
(spatial) axis. Again, blurring removes alias signals at 
high frequencies. 

Why should Gaussian blurring result in a proportional 
increase in T,,, and D,,, limits? Informally, we can 
attribute the proportional relationship to the fact that 
the Fourier transform of a Gaussian function is itself a 
Gaussian function, and the SD of the latter is inversely 
proportional to the SD of the former. So increases in filter 
time (or space) constant correspond to proportional 
decreases in frequency response. We attempted a more 
rigorous assessment of the sampling explanation by 
deriving quantitative predictions for the effects of spatial 
and temporal filtering, based on the information avail- 
able in Fourier transforms of the patterns. First, a set of 
xt plots was created, each containing a row of 32 random 
black-white elements in 32 time-frames. Each xt plot 
was similar to those shown in Figs 8 and 9 (i.e. only 
two time-frames contained dots and the remainder were 
set to grey). Plots differed in terms of the frame-to-frame 
displacement depicted (expressed as multiples of dot 
width), and the IS1 (expressed as multiples of time- 
frames). Further xt plots were generated from this basic 
set by filtering each xt plot with a one-dimensional 
temporal Gaussian filter [i.e. on the vertical axis only, as 
in Fig. 8(b)], or with a one-dimensional spatial Gaussian 
filter [i.e. on the horizontal axis only, as in Fig. 9(b)]. The 
space constant or time constant of the filter was varied 
parametrically in different xt plots. We took the Fourier 
transform of each xt plot and, as a simple estimate of 
the information available for direction discrimination, 
computed directional power (DP), defined as the ratio 
of summed rightward power to summed leftward power 
in the transform (i.e. ratio of summed power in top-right 
and bottom-left quadrants to summed power in top-left 
and bottom-right quadrants). A display containing no 
net motion signal would yield a DP ratio of 1.0. Ratios 
above 1.0 indicate net rightward energy, and ratios 
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FIGURE 10. DP as a function of IS1 (abscissa) and filter time constant 
(different curves), computed from spatiotemporal Fourier spectra such 
as that shown in Fig. 7. Computations are described in detail in the text. 
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FIGURE Il. DP as a function of displacement (abscissa) and 
filter space constant (different curves, specified in inset), computed 
from spatiotemporal Fourier spectra such as that shown in Fig. 8. 

Computations are described in detail in the text. 

below 1.0 indicate net leftward energy. A number of 
recent papers have used variants of this DP measure to 
estimate the information available for Fourier-based 
motion detection in simple displays (e.g. Dosher, Landy 
& Sperling, 1989; Nishida & Sato, 1992; Boulton & 
Baker, 1993). Figure 10 plots DP as a function of IS1 for 
a fixed frame-to-frame displacement of one dot width, 
with temporal filter time constant as the parameter. DP 
declines as IS1 increases, consistent with standard psycho- 
physical results. However, temporal filtering permits 
higher DP values at long ISIS, again consistent with the 
psychophysical data in Fig. 2. Assuming that discrimin- 
ation performance depends directly on DP, an arbitrary 
value of DP was chosen to represent a specific level of 
performance (equivalent to the arbitrary percent correct 
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FIGURE 12. Comparison of D,,, computed from DP values in Fig. 11 
with psychophysical data for two subjects (GM and MJM) replotted 

from Morgan and Mather (1994). 
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used to define T,,,,,), and T,,,,, values were calculated as 
the ISIS yielding this criterion DP level at different filter 
time constants. Figure 5 plots computed T,,,,, against 
filter time constant, along with psychophysical data from 
two experiments. Note that the computed T,,,,, values 
increase in proportion with the time constant of the 
filter, just as the psychophysical T,,, values do. Turning 
to effects of spatial filtering on D,,, values, Fig. 11 plots 
DP as a function of displacement (zero ISI), with filter 
space constant as the parameter. Again, DP levels 
decline with displacement, but are higher for low-pass 
filtered patterns. Using the same criterion level of DP 
as before, D,,, values were calculated from the data, 
and are plotted against some psychophysical data from 
Morgan and Mather (1994) in Fig. 12. The DP measure 
correctly predicts the proportional increase in D,,, with 
filter space constant. It is important to note that the only 
free parameter in the computations is the criterion level 
of DP, and the result of choosing different criterion 
values would be to shift the DP curves in Figs 5 and 12 
along the ordinate. The computations weighted all 
frequency components equally, without regard to a 
“window of visibility”. Despite this simplicity, the 
sampling account can explain the proportional effects 
of filtering on performance limits in RDKs, at least at 
larger filter time constants and space constants. It may 
be necessary to introduce a “window of visibility” to 
maximize the fit of the DP data with the psychophysics 
at very small filter time and/or space constants (where 
filtering has little effect because it removes frequency 
components which fall outside the window). 

As mentioned in the Introduction, spatial filtering 
effects have been explained in the literature in terms of 
changes in the mean separation of features in the “neural” 
image of blurred dot patterns (Bischof & DiLollo, 1990; 
Morgan, 1992; Eagle & Rogers, 1991). We prefer to cast 
the explanation in the spatiotemporal frequency domain 
because it provides an integrated framework within 
which to consider both spatial and temporal filtering 
effects. Of course the sampling explanation falls well 
short of providing a comprehensive theory of direction 
discrimination in RDKs, since it includes no statements 
about the visual processes which extract Fourier energy, 
or how their responses determine discrimination per- 
formance. However, the sampling approach does make 
it clear that important features of the psychophysical 
data can be related simply to the physical information 
content of random-dot patterns, and it is not necessary 
to attribute those features to physiological properties of 
the visual system. 

SUMMARY AND CONCLUSIONS 

The upper IS1 supporting direction discrimination 
(T,,,,,) was found to increase when each frame of the 
random-dot pattern was temporally smoothed at its 
onset and offset. An explanation based on contrast- 
dependent responses in simple motion detectors could 
accommodate the psychophysical data satisfactorily. 
Computational modelling results show that the effect 

of temporal filtering, and previously published effects of 
spatial filtering, can be related to the sampling properties 
of RDKs. The lower sampling rates resulting from long 
ISIS and large displacements introduce spurious alias 
signals which contaminate the spatiotemporal frequency 
spectrum of the stimulus. Temporal or spatial blurring 
extends performance limits (T,,, or D,,,) because it 
removes the high spatiotemporal frequencies which 
generate alias signals. 
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